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We substantiate estimates o/the upper and lower bounds of the effective elasticity modulus of piecewise 

homogeneous bodies. Using the method of integral cross-sections, we solve the elastic problem concerning 
the bending of a Kirchhoff inhomogeneous square plate and find the effective cylindrical stiffness of this 
inhomogeneous plate for various geometric parameters of inclusion, as well as determine the upper and lower 
bounds of the effective stiffness for the set of problems considered. 

Introduction. Inhomogeneous materials such as composite, granular, and fibrous materials, various alloys, 

metal ceramic, etc., have found a wide application in modem technology. There are a number of methods that 

permit one to investigate the physical properties of these materials with a complex form of inclusion and take into 
account end effects and the geometry of the inhomogeneities. These are the methods of R-functions [1 ], averaging 
[2 ], finite elements [3 ] integral cross-sections [4 ], and others. 

In the present work we solve elasticity problems by using the method of integral cross-sections and obtain 
estimates of the upper and lower bounds of the elastic properties of microinhomogeneous materials (MIM). Basic 

concepts and the essential idea of the method are discussed in more detail in [5 ], where a numerical technique for 

calculating temperature fields in piecewise homogeneous bodies was developed and implemented. The present work 

is a further development of the method of integral cross-sections; it suggests dependences and relations for the set 

of elasticity problems considered that can be used in engineering and other computations. 

Method of Integral Cross-Sections. When determining the estimates of the upper and lower bounds of the 
elastic properties of microinhomogeneous materials by means of the method of integral cross-sections, use can be 

made of the inequalities obtained by Hill [6, 7 ]: 

O.i: ) e(:)  < o.IB ) ,(B) ,~(A) : (A) (B), ~(A),(A) < O.I/) r(B) + ,~ (a)(O.~:) __ O.I/)) 
-- ~kl + " ' k l  (ekl -- ekl ) ,  Ukl ~kl -- ~kl Zekl 

where (e~), 4 : ) ) ,  (el~) , o~))  are two arbitrary pairs of functions that characterize two states of an elastic body. 

For convenience in further formulations we shall introduce the operators of averaging over the coordinates: 

1 L 1 
{:(r)}L : z I :(r) dx , {:(r)}s-- :.f :(r) dxidx:. 

o (s) 

In this case, thc following condition is satisfied 

{I-:(")Is }s :"<')>- 
The determination of the estimates of the upper and lower bounds of the thermoelastic properties by means 

of the method of integral cross-sections is based [8 ] on two techniques of arbitrary division of a representative 

volumetric element (RVE) V (Fig. la) in the chosen direction (for example, along the 0x 3 axis) into differential 

volumetric elements (DVE): cylindrical DVE with base area dxldx2 (Fig. lb) and laminated DVE of thickness 
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Fig. 1. Structure of microinhomogeneous material: a) representative volume; 
b) differential volumetric element (DVE) in the form of a prism; c) DVE in 
the form of a layer. 

dx3 (Fig. lc). Moreover, each technique of division is associated with the selection of a pair of fictitious functions 
for stresses and deformations o~;(r) and e~s(r ). 

In the first technique of dividing the representative volumetric element into cylindrical differential 
volumetric elements it is assumed that the mean stress o}/(r ) along the cross-section of the specimen {ojs(r)} s 
perpendicular to the direction selected is equal to the volume-mean stress (o~y), i.e., the following condition is 
satisfied 

{oi. j (r)} s = (oi/), (el.y) = (ei/) . (1) 

In the second technique of dividing the representative volumetric element it is assumed that the mean 

deformation e~s(r ) along length L in the selected direction {el)(r)} L is equal to the volume-mean deformation V of 
the representative volumetric element, i.e., 

{e/j (r)} L = (ely) , (al/) = (a/y). (2) 

Let Hkl#(Xk) be the elasticity modulus tensor of a layer of thickness dx k located perpendicularly to the 0x3 
axis (Fig. 1): 

:~ (1)  ~(2)  X A(l) 
Hklii (Xb) = Cklmn fijmn -4- SI (X3) k~klmn -- ~klmn) "~mnij (X3), (3) 

where  SI(X3) is the area of the intersection of the representative volumetric element by the plane x3 = const occupied 
by the first component: 

Si (x3)  = S i ( x 3 ) / S  (x3) ,  i =  1, 2 ;  S ( x  7) = S 1 (x3) + S 2 ( x 3 ) ;  

1 {1, 
Iijmn = -2 (C~im C~jn + ~in ~jra) ; ~ij = 0 ,  

The tensor Amn q is defined from the equation 

i = j ,  
i ~ j .  

(1) A(I) {emn (r)} S (r)}s 1 = (x3) 

Let Mklij(Xl, x2) be the compliance tensor of a prism of height L with base area  dxldX2: 

re,(1) c ( 2 )  x n ( 1 )  , 
Mklij (x1, x2) = Sklmn Imnij + Z 1 (x 1 , x2) ~Oklmn - Oklrnrt ) Dmnij [Xl , x2) , (4) 

where Lt (xl, x2) is the length of the straight line that passes parallely to the 0x3 axis through P ' :  representative 
volumetric element over the first component: 
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-s (x l ,  xz) = Li (x l ,  x 2 ) / L  (x l ,  x 9  , i = 1, 2 ; 

L (Xl, x2) --- Z 1 (Xl, x2) 4- ["2 (Xl' x2)" 

The tensor Bnmig(Xl, x 2) is defined from the equality 

In order to determine the fork of the possible values of the effective elasticity modulus Ci]kl , we prove the 
following theorem. 

Theorem. I f  for two arbitrary pairs of functions (ekt, akt) and (e'kl, Cr'kt), which characterize the state of an 
elastic body, the following inequalities are satisfied 

(Ykt ekl < Ukl ekl + 2(7kl (ekl -- e , (5) 

s s 

tYkl ekl <_ tXkl ekl 4" 2ekl (tTkl -- Cr'kl ) (6) 

and for a pair of ~caaous funcaons of the stresses ajj(r) and deformations e~j(r) the following expressions are valid 

( -It'  (e'kl) = [Mkli] (Xl' x2) ] S (crij) subject to condition (1) ,  

' t } (~kl) = [Hklij (x3) ]-~ - 1 I. (e/i) subject to condition (2),  

then there is the following inequality 

{[Mkhj(Xl ,  X2 ) ] - l } s  < Cklil < - {[Hkli](x3)]-l}; 1 " (7) 

Proof. To determine the fork of the possible values of the effective elasticity modulus Ci/kl, we determine 

the connection of (a~l) with (ekt) and of (e'~l) with (akt). If we take into consideration that generally the equality 

{a'kl} s = { Ckli] (r) "eiy (r) } S , 

is satisfied, then on the basis of the linearity of the elasticity problem it is possible to write 

where Hkli](x 3) is defined in Eq. (3). 
Multiplying Eq. (8) by the inverse tensor [Hktii(x3)]-I on the left and then averaging the resulting 

expression over length L (variable x 3) with account for Eq. (1), we obtain 

(eij) = { [Hklij (X3) ]- l  } L (Cr'kl) . 

Thus, 

(9) 
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Now we will consider {e~/(r)}L. From the linearity of the elasticity problem we have 

{~.kl}L = Mkli](x,, x2){oi](r)}L, (10) 

where Mlai](Xl, x2) is defined in Eq. (4). 
Multiplying Eq. (10) by the inverse tensor [Mktii(xl, xz)]-1 on the left and then averaging the resulting 

expression over the cross-section S perpendicular to the 0x3 axis and allowing for Eq. (2) we obtain 

<o,;= -l} 
s 

whence it follows that 

If instead of (aM, e/d) and (a'kl, e'kl) we substitute the pairs ((~r~/), (ekl)) and ((a'kl ~, (ekl ~) into Eq. (5) and 
the pairs ((akl), (ekl)) and ((a~, (e~l)) into Eq. (6), we obtain 

(akl) @kl) < (Cl'kl) @kl) ' (12) 

Substituting (l 1) into (13) and (9) into (12) with account for the fact that the effective elasticity modulus 
Cilkl is determined from the equation 

and rearranging, we obtain the expression 

{ [Mklij (Xl , X2) ]-l } s <- Ckli] < { [Hklij (x3) ]-l } L , 

which was to be proved. 
On the basis of this theorem, when the components of the microinhomogeneous materials are isotropic, we 

obtained the following formulas for the upper and lower bounds of Young's elasticity modulus E and Poisson's 
coefficient v: the upper bound 

- 1  1 
Eup = e l  [ {BI I}L- -v I{BI2}L  ] ' ( E ) u p = E - - ~ I  vz{Bzz}L - - { B Z 2 } L I '  (14) 

where 

1 M - v 2 F  1 F - v 2 M .  

~11 = e2 M ~ ~ '  ~ _ e 2 M 2 _ ~  

v v2{  t . =  E;'e;' {E}~; F= E,E2 -~ s; 

the lower bound 
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t 
where 

r /=  

v I v 2 

1 - - 
-2L (1-LI) M - F  

L 

- 1  

Here and after El and E2 are the Young moduli of component 1 (inclusion) and component 2 (matrix), respectively; 

Vl and v2 are the Poisson coefdficients of the first and second components, respectively. 

Bending of an Inhomogeneous Plate. We consider an elastic problem concerning the bending of an 

inhomogeneous square plate (0 <__ x, y _< a) of constant thickness h that consists of two different materials in two 

corresponding regions. For setting and solving the problem, we use a mathematical model of the bending of a 

Kirchhoff plate. The symmetry center of the plate is x = a/2 ,  y = a/2. 
The material that comprises the inner region of the plate GI (inclusion): 

a a 
~ - e < x ,  y < ~ + e ,  

where 0 < e < a / 2 ,  has cylindrical stiffness D 1. 

The material that comprises the outer region of the plate G2 has cylindrical stiffness D 2. 

For definiteness of the problem, we assume that the lateral edges of the plate are fixed in a rigid base. On 

the upper face of the plate there is an intensity load g = g(x, y) normal to the plate. It is required to find the effective 

cylindrical stiffness Def of the given inhomogeneous plate for various geometric parameters of inclusion, as well as 

to determine the upper and lower bounds of the effective stiffness Def for the set of problems under consideration. 

The boundary-value problem set is reduced to solution of the differential equation for a bent middle surface 

of the plate (to the C. Germen-Lagrange equation) [9 ] 

g(x, y) if (x, y) C G 1 
Lw = 04w (x, y) + 2 04w (x, y) O4w (x, y) D! ' (16) 

Ox 4 Ox2Oy2 + 4 = g ( x , y )  if (x,y) C G  2 
Oy D2 , 

o r  

o r  V 2 V 2 w  = g ( x ,  y) 
D i ' 

where D i = Eih3(12(1 - v/2)) -1, i = I, 2 is the cylindrical stiffness of the plate; w is the displacement of the point 

along the z axis. 

In our case, g(x, y) -- g = const. 

The continuity condition of displacements is fulfilled at the phase interface B = G1 N G2. 

The boundary conditions for the given problem will be written as follows: 

~ I =0;  
W I x=O,a = OX x=O,a 

Ow (x,  y) [ = O. (17)  
W I y=O,a = Oy y=O,a 

On the basis of Eqs. (14) and (15) it was proved that: 
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1) if the stiffness of the matrix is smaller than that of the inclusion (Dl < D2),  then the lower and  upper 

estimates of the effective stiffness in problem (16) and (17) will be determined in the following way: the upper 
bound 

where D' =l iD1 + 1"2D2; the lower bound 

D,p = D2D'/ (  2D' + D2), (18) 

nio  = + - , '2 , ( 1 9 )  

where .f2 = ~l12V2(D2 - DI)2[DID2(1  - v)OiD2 + 72D1)l-l; 

2) if the stiffness of the matrix is greater than that of the inclusion (D 1 > D2), then the lower and  upper 

estimates of the effective stiffness in problem (6)-(7) will be determined as follows: the upper bound 

Dup = 71h! + 12D2 , (20) 

the lower bound 

Dlow = 72D2 + 71D" + f0  2 ' 
(21) 

where 

2 - D ' )  2 
D" l l  + 7 2 - f 2  . f 0  II (D2 

= - -  _ _  , 2 = 2  - 

O 1 02 3"02 (1 -- V) (1102 +-12 o ' )  

Here v I = v 2 -- v; II = l i / l ,  li is the rib length of the i-th component, i = 1, 2, l -- Ii + /2. 
We will construct a finite-difference scheme for Eqs. (16)-(17) in the following manner.  Using the straight 

lines x = kc, y = kc, k = 1, 2 . . . . .  n, we construct a rectangular grid Bn that will divide the region G = Gl U (32 into 

(n + 1) a cubes (ct is the dimensionality of the region G). 

There will be three types of cubes: 

1) Vii c GI (stiffness DI) ; 

2) Vxk C G2 (stiffness 32) ; 

3) Vak D B (stiffness D3). 

Then,  we replace each cube by a node (the node is located at the center of the cube) with connections that 

are determined by the stiffness properties in mutually perpendicular directions. 

The stiffness of connections between adjacent nodes that belong to different types of cubes is determined 

as the harmonic mean of the stiffnesses of these cubes. 

To determine stiffness D3, we use Eq. (7). According to the method of integral cross-sections, stiffness D 3 

will be determined as the arithmetic mean of the upper and lower bounds according to formalas (18)-(21). 

As a result of such a construction we obtain a new grid B' n whost: nodes are joined by three types of 

connections. Taking into account that D = D(x,  y),  the difference approximation of differential operator (16) can 

be represented in the following form: the like derivatives are 

0 (Dw) ~ = 1 (wi_2, j hi_2, i_l;]  _ Wi-l,J (h i_2 , i_ l ;  j + 3hi_l , i ; j )  + 
Ox4 i] c 

+ Wi j (3Di_l,i;] + 3Di,i+l;j) _ W i + l ; j  (3Di,i+l;] + Di+2,i+l;] ) + wi+2,y O i + E , i + l ; j  ) . (22) 

(the derivative with respect to y is determined in a similar fashion), the mixed derivatives are 
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Fig. 2. Logarithmic dependence of Def/D2 on the logarithm of Dl/1)2 (a) and 
the logarithm of k (b): a) 1, k = 1/10; 2) 10 ~ 3) 10; b) 1, D2/D I -~ 100; 2) 
1[100. 
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Fig. 3. Lograithmic dependence of Def/D 0 o n  ll/12: a, 1) DI/D2 = 1/10, 2) 
1/100, 3) 1/1000; b, 1) DI/D 2 = 10, 2) 100, 3) 1000. Do = 1 n.m. 

Ox2 0y 2 I ] ij c 

( l 1 ) 
-- Wi_l, j Di-l,i;j + ~ Di-l;jd-I + -~ Di-l;j,/+l - -  

-- Wi+ld Di+l,i;j + ~  Di+l;j,j+l + ~  Di+l;j,j-I - 

( 1 1 ) 
-- Wi,j+ 1 Di;j,j+ 1 + 2 D i -  1 ,i;j+ 1 4- ~ Di+  l,i;j+ 1 4- 

1 1 
+ Wi_ld_ 1 -~ (Di-l;j-ld + Di_l,ij_ 1) + -~ Wi+l,j+l (Di+Ij+l,j + Di+l,i;j+l) + 

1 1 ] (23) 
+ -~ Wi-l,j+l (Di-l,i;j+l + Di-l;j+l, j) + ~ Wi+l,j-i (Di+l,i;j-I + Di+l;j_l, j) �9 

Substituting Eqs. (22) and (23) into original differential equation (16) with allowance for boundary 

conditions (17), we come to a system of linear algebraic equations. Solving this system, we find the unknown 
deflections of the plate. Then, using the results obtained, we determine the effective cylindrical stiffness of the 

given inhomogeneous plate from the following formula: 
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TABLE 1. Results of Calculations of the Upper/)up and Lower/how Bounds for Effective Stiffness Def with Different 
Relationship Between Side Lengths of Matrix lm and Inclusion line 

DI 

1 

1 

1 

I 

1 

5 

10 

100 

1000 

D2 

1 

5 

10 

I00 

1000 

1 

1 

1 

1 

lm:liac = 9:2 lm:linc = 9:4 lm:linc = 9:5 

Def /)low Def /)low Def /)low 

1 

4.7 

9.2 

91 

910 

1 

2.6 

3.3 

4.3 

4 . 5  

Dup 

I 

4.8 

9.5 

94 

940 

1 

3 

4.2 

7.9 

8.8 

1 

1.8 

2 

2.2 

2.2 

Dup 

1 

4 

7.2 

74 

740 

1 

2.3 

3.1 

5.2 

5.6 

1 

1.6 

1.7 

1.8 

1.8 

1.1 1 

1.1 1.1 

1.1 1.1 

1.1 1.1 

1.9 

3 

23 

�9 220 

1.4 1.2 

1.6 1.3 

1.8 1.3 

1.9 1.4 

2.8 

5 

45 

440 

1.9 1.4 

2.2 1.6 

2.9 1.7 

3 1.7 

Dup 

1 

3.5 

6.4 

60 

590 

3.2 

6 

56 

560 

a 

( n ~ ) L - i  Def = (rt 4- I ) - a  Wij gi ' 
i=1 

where Lw is defined in Eq. (17). 

The results of calculations are represented in Figs. 2 and 3. For calculations, we selected the following 
values: h = 0.01, a = 1.8, and c = 0.3. 

As is seen from Fig. 2a, the quantitative analysis indicates that in the case of a "stiffer" matrix, compared 

to the inclusion, the interphase connection exerts a substantial influence on the effective stiffness of the 
inhomogeneous plate. 

On the basis of the numerical results (Fig. 2b), we find that beginning from the value k = 0.1, its further 
increase considerably affects the growth of the effective stiffness of lhe inhomogeneous plate at any relationship 

between the stiffnesses of the matrix and inclusion. 

Analysis of the numerical results given in Fig. 3 also allows the following conclusion: growth of the geometric 

parameters of the inclusion has a substantial effect on the effective stiffness of the inhomogeneous plate when the 

stiffnesses of the matrix and inclusion differ by more than an order of magnitude. 

The lower/how and upper/)up bounds of the effective stiffness of the plate Def were calculated by formulas 
(18)-(21) (see Table 1). 

Conclusion. Using the method of integral cross-sections, an elastic problem concerning the bending of a 

Kirchhoff inhomogeneous square plate is solved. The estimates of the upper and lower bounds obtained for the 

effective elasticity modulus were applied for describing the phase interfaces in calculations of deflections of the 

inhomogeneous plate. It is shown that the conditions of interaction between the inclusion and matrix exert a 
substantial effect on the effective characteristics. The dependences of the effective stiffness of the inhomogeneous 

plate on the geometry and stiffness characteristics of the matrix and inclusion are obtained. 

N O T A T I O N  

crij, stress tensor; eij, deformation tensor; k, cofficient of interaction between a matrix and inclusion; c, 
spacing in finite-difference scheme. Subscripts: low, lower; up, upper; ef, effective; m, matrix; inc, inclusion; A, 

body in state A; B, body in state B; S, cross-sectional area of representative volumetric element; L, rib length of 

representative volumetric element. 
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